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1. Introduction

The theory of variational inequalities (referred to as V1s) started in the sixtieswith
papers of C. Baiocchi, H. Brezis, G. Duvaut, G. Fichera, D. Kinderlehrer, J. L.
Lions, G. Stampacchia and others. It provides mathematical models for problems
from elasticity, thefluid flow through porous media, semipermeable mediaetc. (see
[11]). Thetheory of VIsisbased on avariational method for PDEs and the calculus
of variations, and it permits to characterize solutions of minimization problemsfor
convex and differentiable functionals on closed convex sets. In this context, VIs
can be regarded as a more general description of systems than the one based on
PDEs. Inthe case of quadratic functionals, where the set on which the minimization
is performed becomes a subspace of a vector space, Vs reduce to PDEs (the Euler
equations).

Thetheory of Vs has been considerably enriched by the development in many
directions, in which assumptions on differentiability and convexity of functionals
have been dropped (see, e.g. Brezis[3], Moreau [19] and Panagiotopoul os[25] for
the connections between VIs with convex potentials and the theory of monotone
operators). Recently, Panagiotopoulos [24], [25], [26] has formulated inequality
expressions called hemivariational inequalities (HV1s), which are derived with the
help of the generalized gradient of Clarke[6]. The HVIs are generaizations of Vs
and they cover boundary value problems for PDEs with nonmonotone, nonconvex
and possibly multivalued laws (for the problems where the Clarke subdifferential
is a pseudomonotone operator, we refer to [22]).

The aim of this paper isto prove an existence result for an optimal shape design
problem for systems described by HVIs. It may be formulated asacontrol problem
in which HVI appears as a state equation and the role of controls is played by
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sets from afamily of admissible shapes. The cost functional to be minimized is of
general integral form. We consider the shape optimization problem separately for
two types of HVIs:

19 for HVI with a nonlinear discontinuous law in a domain © in RV : find
u € K () such that

a(u,v—u)—l—/ﬂjo(u,v—u)dxz(f,v—u)VXV,, Vove K(Q) Q)
and

29 for HVI with anonlinear law on the boundary 92 of Q: find u € K () such
that

a(u,v—u)-l—/lmjo(u,v—u)da > (fv—u)yy e, YOEK(Q). (2

Above a(-,-) is a bilinear form on V' = H(Q) or V. = H}(Q), K(Q) isa
nonempty, closed, convex subset of V and j° denotes Clarke' sdirectional derivative
of alocally Lipschitz function j: R — R whose subdifferential 05 describes the
nonmonotone, nonconvex and possibly multivalued law, respectively, in 2 and on
itsboundary 992. Asitisknown, in applicationsthe set K (€2) incorporates various
unilateral conditions on €2 or on 0f2. For examples of concrete situations which
lead to problems (1) and (2), we refer to Section 6.

The proof of the existence of optimal shapes is based on the direct method of
the calculus of variations. We also use the mapping method, introduced by Murat
and Simon in [20] and [21], which provides both a class of admissible shapes and
a topology in this class of domains. The admissible shapes are obtained as the
images of afixed open bounded subset of RV by regular (see Section 2 for details)
bijectionsin RY . The lower semicontinuity of objective functionalsis considered
with respect to the local convergence of functions (cf. Serrin [32]).

There is a rich literature on the mathematical theory of shape optimization
problems. We only mention that optimal shape design problems for PDES were
considered by Murat and Simon [20], Pironneau [29], Sokolowski, Zolesio, Tar-
tar, Allaire, Sverak, Masmoudi and many others, while Vs were considered by
Haslinger, Neittaanmaki and Tiihonen [13], Tiihonen [33], Liu and Rubio [16]
and Neittaanmaki [23]. For computational aspects of shape design problems, see
Haslinger, Neittaanmaki [12], Salmenjoki [31], Miettinen, Makela and Haslinger
[18].

A dlightly different approach to problems described by VIs with nonconvex
potential wasintroduced by Degiovanni, Marino and Tosques[8] who used another
notion of the subdifferential.

Another approach to shape optimization for systems described by PDEs is
presented by Buttazzo and Dal Maso [4] who have used theT" convergence theory.
We also mention that the distributed-parameter optimal control problemsfor HVIs
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have been treated by Haslinger and Panagiotopoulos [14], [15]. For more papers
on the subject we refer to the above mentioned works.

The plan of the paper is as follows. In Section 2 we recall the notation and
preliminaries about the mapping method. Section 3 is devoted to the study of the
HV1 of theform (1). For such aproblem we provide aresult (see Proposition 1) on
the closedness (in suitable topologies) of the graph of a mapping which, to every
admissible shape, assigns the solution set of (1). It turns out that this property
is crucial for our approach and it permits to get, in Section 4, an existence of
optimal shapes for systems described by the HV1 of the type (1). We also employ
the Mosco convergence (as m — oo) of sets T,,, K (€2,,,) obtained from K (Q,,)
through mappings 7;,, taken in a suitable class of transformations. In Section 5 we
study a class of HVIs of the form (2) by analogous methods as those of Section 4.
The optimal shape design result for this case is also given. In the final section, we
conclude with remarks on some examples coming from mechanics to which our
results can be applied.

The main result of Section 4 have been announced in its preliminary form in
[9] and [10].

2. The Mapping Method

In this section we recall the notation and basic results on the mapping method
which were established by Murat and Simon [20]. Roughly speaking, this method
consists in finding the optimal shapesin a class of admissible domains gained as
images of afixed set. More precisaly, we introduce the metric space of domains as
follows.

Let C be a bounded open subset of RV with a boundary C of class W5,
i > 1 and such that int C' = C. Denoting by C(RY, R") the space of uniformly
continuous functions from RY to RY , we consider the following spaces

whEe®Y,RY) = {o| D% € L=®RY,RY) fordl 0,0 < || < k}
WEERN ,RY) = {¢| D% e L®®RY,RY) nC(RY,RY) for al «
and 0 < |of < k}.

Let o denote theindex equal to oo or to ¢ and let & > 1. We define the space O%7
of bounded open sets of RN which are isomorphic with C, i.e.

Ok ={Q|Q=T(C), T € FF},

where F%7 is the space of regular bijectionsin RV defined by
Fho —{T:RN — RV | T isbijectiveand T, T~* € VF7},
Ve —(T:RYN - RV | T — T e Who®RYN,RV)}.

In other words, F*> represents the set of essentially bounded perturbations (with
essentially bounded derivatives) of identity in RV . It can be seen (see[20]) that if
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C hasa W*“ boundary, where k > 1 and o = oo or ¢, then every set Q € Ok
also has the boundary of class W*+?. Endowing the space [W*7 (RV )] with the
norm

1/2
||so||k,a=esswp( 3 |D%|§N> ,

veRY \0<|a|<k
we define on O%7 x %7 afunction

Ok, (21, 22) = Tefk,ai,gf(m):nz (HT ~ ko + ||T71 - IH’%U) '

The mapping 6., for k > 1 and o = oo or ¢ is a pseudo-distance on 0%+ since

it does not satisfy the triangle inequality (see Section 2.4 of [20] for a precise
definition). From Proposition 2.3, Theorem 2.2 and Theorem 2.4 of [20], we have

THEOREM 1. Letk > 1and o = oo Or €.

(1) Thereexistsapositiveconstant /14, suchthat dy. , definedby dy, » = (0k o A 1)
isametric on O,

(2) The space (O’“’, dk,(,) is a complete metric space.

(3) If & > 2, then the injection from O%: into ©*~17 is compact. More precisely,
if kK > 2 and B is a bounded (in 4 ,), closed subset of O*, then for any
sequence {2,,,} C B, there exist a subsequence {Q,,, } of {Q,,} and a set
Q € Bsuchthat Q,,, — Qin O 17,

1/2

REMARK 1. It is known (cf. Section 2 in [20]) that (for ¥ > 1 and o = oo or
), Q,, — Qin O iff there exist T}, and T in F* such that T;,(C) = Qn,
T(C)=QadT,, — T, T, — T Lin[Wko(RV)]V.

Some facts on the mapping method, needed in this paper, are summarized in
the following.

LEMMA 1.

@) IfT € FL°, 0 = T(C), thenu € T2(Q) iff uo T € LA(C); u € HYQ) iff
uwoT € HY(C). Moreovey, if u,, — win HY(Q) (or in HY(C)) andT € Fk>
with & > 1, thenu,, o T — wo T in HYC) (Of Uy, o Tt = uwoT7tin
H(Q)).

(b) Letu € H(RV) withl = 0or 1, £ > 1and o = oo or ¢ Then the mapping
T ~ u o T iscontinuous from V¥ to H'(RV) at every point T € F*»°.

(c) Let k > 1and o = oo or €. The following mappings are continuous

T+ Jzt from VP7 to WhLo(RN R2Y),
T + detJr from V¥ to Wh=19 (RN R)
at every point T € F*7 (Jr denotes here the standard Jacobian matrix of T).
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For the proofs of (a)—(c) of the above lemma, we refer, respectively to Lemma4.1
(seedso[16]), Lemma4.4 (i) and Lemma4.3 and 4.2 of [20].

In what follows, we report on relationships between the convergence in 0%
and other types of convergence of sets.

Let D be an open set of RV and let 1 denote its characteristic function.

DEFINITION 1. TheHausdorff complementary topology, denoted by H¢, isgiven
by the metric

d(Q, Q) =max | sup inf |[z—yl|, sup inf |lz—y|l].
(91,2) (zED\QlyED\QzH ||I€D\szeD\Ql|| l

REMARK 2. Letk > 1.
(I) If Q,, — Qpin Ok,oo, then 1Qm — 1Q0 in LZ(RN);

(ii) If Q — Qg in 05 andint C = C, then ©,,, 2 Qo.

The following important property of the H¢ convergence is the “covering” of
the compacts.

REMARK 3. If Q,, 2= Qo, then

VG CCQ, dmg €N . Vm >mg G C Q.

Finally, we note that the Hausdorff H¢ distance is not sufficient for our con-
siderations since O%7 (for k > 1, ¢ = oo or ¢) endowed with H¢ distance is not
complete (see Section 2 of [20]).

The following basic hypothesis will be needed in the next sections:

(Ho) : C isabounded open setin RV with boundary of class W*?, i > 1
suchthat int C = C and B is abounded closed subset of O, with
k>2and1<i<k.

In Sections 3 and 4 we suppose that (Hp) is satisfied with o = oo, while in
Section 5 this hypothesisfor o = ¢ is assumed.

3. Hemivariational Inequality with Nonlinear Law in

In this section weinvestigate a class of hemivariational inequalities with nonlinear
laws appearing in Q. After introducing notations, we present a result on the exis-
tence of solutions. Then, we show apriori estimatesfor solutionsaswell asaresult
on the dependence of the solution set on the domain.

Let usfix aset Q in B where B denotes a bounded closed subset of O%>° with
E>2leV =V(Q) = HY(Q) with the usual norm denoted by || - || and let
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K () beanonempty closed convex subset of V. Leta: V' x V — R beabilinear,
continuous form

a(u,v) = /Q [(A(z)Vu, Vv) + ap(z)uv] dz. (3

Given 8 € Lj5.(R), we denote by B: R — 2% amultifunction obtained from /3 by
filling in the gaps at its discontinuity points, i.e.

BE) = [B(€), B©)],

where

p(&) = lim, essinf 5(t), B(&) = lim ‘efigﬂ(t)

and|[-, -] denotestheinterval. Itiswell known (cf. Chang [5]) that alocally Lipschitz
function 7: R — R can be determinated up to an additive constant by the relation

j(€) = fof B(s)ds andlhat dj(€) C B(). If moreover B(¢ + 0) exist for every

¢ € R, then 95(¢) = B(€). Here 95: R — 2% denotes the Clarke's generalized
subdifferential of 5 (see[6]) given by

9j(€) = {n e R[j%&) 2 ny, VyeR} foral¢ ek
The notation j°(-; -) standsfor Clarke's directional derivative defined by

’ h—0, £,0 t

foral &,y € R

By a hemivariational inequality we mean the following problem:

find u € K (£2) such that

(HVI)
a(u,v —u) -I—/Qjo(u,v —u)dr > (f,v —u)yi .y, Yo € K(Q).

We will make the following hypotheses concerning the data of the problem
(HV1).

H(a) : a:V xV — Risabilinear, continuous(i.e. |a(u,v)| < M||ul|||v]]

~ foru,v € V with M > 0) and symmetric form given by (3) which
is coercive on V' (i.e. a(v,v) > a[v||? for v € V) witha > 0
independent of Q and the matrix A € [C(RV )]V N [L°(RV)]Y,
ap € C(RV)NL®(RY), ap(z) > @ > Oae.z € Q.

H(pB) : g € LS (R) issuchthat

loc

(i) p(§+£0)existsforeaché € R,
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(i)  the graph of 3 ultimately increasesi.e. there exist £ € R
such that

esssup B(§) < 0 < essinf B(¢);
(700,75) (€,+00)

(iii) thereexistsco > Osuchthat |3(&)| < co(1+¢]) for & € R.

H(K)1: K(Q)isanonempty convex, closed subset of V' (Q2),
H(f): feV

The concept of solution to problem (HV1) is specified below.

DEFINITION 2. An element u € K(2) is said to be a solution to (HVI) if there
exists x € L?(Q2) such that

a(wo—w)+ [ x(o—u)do > (f0 = uhyp . Vo e K(Q) ()
and
x(z) € 9j(u(z)) forae. z € Q. (5)

For ajustification of this definition we refer to Chapter 3 of Naniewicz and Pana-
giotopoulos [22]. In the sequel, by S(©2) we denote the set of all solutions to
(HV).

The following existence result can be proved by the methods of Chapter 3.4 of
Naniewicz and Panagiotopoulos, loc. cit. (compare also [30]).

THEOREM 2. If hypotheses H (a), H(3), H(K )1 and H(f) hold, then problem
(HVI) admitsa solution, i.e. S(Q2) # 0.

Due to the lack of convexity of j (or some additional growth condition on the
function 3, see Miettinen [17]), no uniquenessresult for (HV1) can be obtained, so
S(€2) contains, in general, more than one element.

LEMMA 2. Under the hypotheses of Theorem 2, if u € S(€2), then the following
estimate holds:

lul] < C(v) (1+ meas(Q) + || f[lv7) , (6)

where C'(v) satisfies0 < C(v) < b1||v|| + bz with b, b, depending on M, « and
co, and v isan arbitrary element of K ().

Proof. Let v € S(R2). This means that v € K () and there is a function
x € L?(Q) such that (4) and (5) are satisfied. Since 3 ultimately increases (see
H(()(7i)), two positive real numbers p1 and p, can be determined such that

B€) <0, if &< —pa



44 Z. DENKOWSKI AND S. MIGORSKI
B(&) >0, if&>pr;
1BE)] < p2, if €] < p1.

Hence, using the definition of 3, we readily get

06U 2@ = / xudz + xudr > (7
lu(z)|<p1 lu(z)[>p1

> / xudz > —p1p2 meas($).
[u(z)|<ps

On the other hand, owing to H(S3)(iii), we have

x| < ca (/meas(®) +ul). (®)

where ¢, > 0 depends only on ¢p and | - | denotes the L?(2)-norm. From the
coercivity of a(-,-), (4) and (7), we obtain

a||u—v||2 < CL(U—U,’U—U)S(X,U—U)L2+G(U,U—U)—(f,U—U>S
< (% 0)r2 + prp2meas() + Mol [ [ — wl| + || F|lv[[w — ]|

foreveryv € K(2).By taking (8) into account and using theinequality |-| < e1]|-||
with ¢; > 0, we get

aflu —v||? < prpameas(Q) + M|v|| [|v — ul| + || f]|v]lu — v]| +
+02< meas(Q)+cl||u||> ]

foral v € K(Q), and subsequently

allu — ol < (M|l +11fllv: + exezfo]) [Ju — o]| + 9)

+p1p2 meas(€) + calol <\/meas(Q) 4 Cl||v||> .

Hence
[lul] < C(v) (1+ meas(Q) + | f[lv7) ,

where C'(v) < b1||v|| 4+ b2 and so the inequality (6) follows easily. O

The next result will be crucial in the proof of the main theorem. We need the
following hypothesis:

H(K),: K =TK(Q) c HYC) isindependent of T for al T € F*>,
with &k > 2.
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PROPOSITION 1. Let us assume that (Ho) with o = oo, H(a), H(B), H(K)x,
H(K); hold and f € L?(R2). Thenthe map B > Q — S(Q) C V(Q) has a
closed graph in the following sense: if ©,,, Qo € B, Q,,, — Qo in OF®, (k > 1),
Um € S(Qm), U = U, © Ty, Uy, — u* Weakly in HY(C), then u* = ug o Tp for
SoOMme ug € S(Qo), where(2,,, = Tm(C) and Qg = To(C).

Proof. We follow someideas of Liu and Rubio [16]. Let 2,,,, Qo € B be such
that Q,,, — Qg in 0% with k > 1, where Q,,, = T},,(C) and Qg = To(C). By
definition (cf. Remark 1) T, To € F*> and T,,, — To — 0, T;* — Tyt — 0
in [Wk°(RN)]V. Without loss of generality, we suppose that det.J7,, > 0 and
detJy, > 0onRY. Lét uy, € S(Q), i€ uy € K () and there exists xm, €
L2(%2,,,) such that

R, /Qm Xom(0 = ) dz > (f,0 = )2, Vv € K ()
(10)

and
Xm(z) € 0j(um(x)) forae z € Qp,. (11)

By using the transformation = = T,,,(X), we rewrite (10), (11) as the following
equivalent problem on the set C":

ar, (Tm, v — Tim) + (Xms ¥ — ) = (frm, v — i), Vv € K C HYO)
(12)

and
Xm(X) € 0j(um (X)) forae. X € C, (13)

where,, = UmonyA\Tm =AoTy,m = aoT, Xm = Xmonyfm = foTy,
and

an (onv) = [ [(T5200 A0, (X) 5 (X) Vi (X), To(X) +
i (Xl (X )u(X)] det 7, (X) dX,
(%) = [ % (X)0(X) det T, (X) dX,
/ Fon(X)0(X) detJr. (X) dX.

Since K satisfies H(K),, we may consider » in (12) to be fixed. Moreover, we
know (see Lemma 1(a)) that @, € H(C) and Xy, fm € L*(C).
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Our godl is to pass to the limit, as m — +oo, in the problem (12), (13). By

hypothesis
U — u* weakly in H(C) (14)

and since OC' is regular enough to ensure the compactness of the embedding
H(C) c L?(C), we have

U — u* inL%(0). (15)

The set K is weakly closed (being closed and convex), so from (14) we obtain
u* € K.

On the other hand, by using H () (7i7), from (13) we get | x| < c3(meas(C') +
|tim|) with c3 > 0 (| - | being the norm in L?(C)). Hence and from (15), after
passing to a subsequenceif necessary, we have

m — x° weakly in L?(C) (16)

with x* € L?(C). R R R
By Lemma 1(b), we know that f,, — foin L?(R") with fo = fo o Tp. It can
be verified that

(Frns ¥ — i) = (fo,v — u*). (17)
Indeed, we have
|(fm7U - an’L) - _(anU - U’*)| =

:‘/ fm(v—ﬁm)detJdeX—/ fo(v—u*)detJTodX‘ <
C C
< || detTr,, — detry|| [ |Fulo = )] dX +

+ ‘/C [fm(v — Tim) — folv — u*)] detJp, dX ‘

The first term on the right hand side converges to zero since the sequences {fm},
{@,,} areboundedin L2(C) and detJ7,, — detJy, in L>°(RY) (as aconsequence
of Lemma 1(c)). The second term on the right hand side also tends to zero dueto
(15) and the strong convergence of £,, to fo in L?(C).

In an analogousway as we proved (17), we can show, using Lemma 1(c), (15)
and (16) that

(5(\77%7)_17’771) - (X*,U—U*). (18)

Subsequently, from the assumptions on the matrix A, we deduce that A(-) is
uniformly continuous on every bounded subset of RV . Since T;,, — To, T,,,* —
Totin Wk (C)N and T, (C), To(C) arein abounded set of RV, we obtain

Ar, — Ag, in[L*(C)N.
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Hence, from Lemma 1(c), we have
JptAr, It — JprAndn! in[L2(O)N (19)
Let v € K befixed. From the following inequality
lat,, (Um, v — Um) — a1y (Um, v — Um)| <

< ‘ / ([t Ar, J5! = JptArdgt] Vi, Vo = Vi, ) detr, dX‘ +
C

+ / (I Ay J Vi, Vo = Vi, ) [detJr, — detJr] dX‘ +
C

| [ im0~ ) [det T, — et dX‘ +
C

+ /C (G — 80 i (0 — i) et T, dX‘ <
< ||detJz, || [| 5t Az, J7,! = T Arg I G ey iim — ol +
+ || T Ay I || || det T, — detTry | [ | oy fim — vl ey +
+ [|@m|| [[tm|| |lv — || [|detJr,, — detJz, || +
+ [|@m — @ol | [[@m|| [[v — G| ||det 7],
by taking (14), (19) and Lemma 1(c) into account, we get
aty, (Um, ¥ — Upm,) — a1y (U, v — Upm,) — 0. (20)
Next, we will show that passing to the limit in (12) and (13), we obtain
any(u*, v —u*) + (x5, 0 —u*) > (fo,v —u*), VveK, (21)
X" (X) € 9j(u* (X)) forae. X € C. (22)

In order to prove (21), it is enough to observe that using the weak-V lower semi-
continuity of the function v — a(v, v) and convergences (14), (17), (18) and (20),
we get

(fo,v —u*) = Iirmnf(fm,v — i) <
< Iirr71ninf [ar,, (Umy ¥ — Um) + (Xm», ¥ — Um)] <
< IimmsupaTo(ﬂm,U — Up,) + Iinr1n [ar, (TUm, v — Um) — a1y (Tm, v — U] +
+ |inr1n()2m,v —Um) < ap(u,v —u*) + (x*, v —u").

Then, in order to obtain the limit relation for (13), we apply the convergence
theorem (see[1], p. 273). By passing to subsequences, if necessary, from (15) and
(16), we have

Um — u* aeinC,
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Xm — X* weaklyin L1(C).

Since the multifunction 95(+) is u.s.c. with nonempty, convex and compact values
(see[6]), by exploiting the above convergences, we deduce from (13) by applying
the convergence theorem that (22) holds.

Now we write down the problem (21), (22) in an equivalent form by employ-
ing the transformation X = T *(z). To this end, we introduce functions ug =
u* o Tyt and xo = x* o Ty *. From the relations Tra(x) = I (Ty H(z)) and
detJr, (Ty *(z)) - detJTo_l(x) = lae onRY (cf. respectively, Corollary 2.1 and
page IV-7 of [20]), we have

{ a(uo,v — uo) + (x0,v — UO)LZ(QO) > (f,v— U’O)LZ(Q())7 Vvoe K

xo(z) € 0j(uo(x)) for ae. z € Q.

Sinceu* € K and xo € L?(Q0), we conclude that ug € S(Qp) and u* = ug o Tp.
This completes the proof of the proposition. O

REMARK 4. With a few modifications in the proof above we can establish the
validity of Proposition 3.1 for the case when f istaken from H~1(£2) and not from
L?(©). Onthe other hand, we can also carry out this proof when H(€2) isreplaced
by H5(%).

4. A Shape Optimization Problem

In this section we present the main result of this paper on existence of optimal
shapesfor systems governed by hemivariational inequalities.

The optimal shape design problem consists in solving the following control
problem:

find (2%, u*) € J (2 x S()) suchthat
QeB (23)
J(Q",u*) =min min J(Q,v),
QEB veS(Q)
in which the control is the set Q changing in the family B ¢ 0% (k > 2)
of admissible shapes, S(€2) denotes the solution set of hemivariational inequality
(HVI) and the cost functional is of the integral form

T(Q,u) = /Q L(z, u(x), Vu(z)) dz. (24)

In the case 3 = 0, the set S() reduces under our hypotheses to one element
and hemivariational inequality becomes variational inequality considered by Liu
and Rubio [16].
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For expositional conveniencewe givefirst an existenceresult for (23) under the
assumption that T K (Q2) is independent of T' (i.e. H(K), holds) and then in the
casewhen T'K (2) varieswith T'. We recall the following

DEFINITION 3. (see Serrin [32]) Let D be an open subset of RV and let ¢,,, ¢
be locally summable functions defined in RY . We say that ¢,, converges locally
to ¢ in D if for any compact subset G of D, we have: ¢,, is defined and summable
on G, at least for m sufficiently large and ||¢m — ¢l z1(e) — O.

We need also the additional hypothesis:

H(J): Jisl.sc. with respect to thelocal convergencein RV .

THEOREM 3. If hypotheses (Hp) with o = oo, H(a), H(B), H(K)1, H(K)2,
H(J)holdand f € L?(£), then problem (23) admits at least one solution.

Proof. We apply the direct method of the calculusof variations. Let (2, un,) €
Uaes (2 x S(2)) be a minimizing sequence for (23). Since B is compact in
OF=1o (cf. Theorem 1(3)), we infer that there is a subsequence of Q,, (still
indexed by m) and a set Qo € B such that Q,,, — Qg in ©*~1°°, This means
that there exist T),,, To € F*~ 1> such that Q,, = T,,,(C), Qo = To(C) and
T —To — 0, T, — Tyt — 0in [Wk-Loo(RV )|V,

On the other hand, since u,, € S(©,,), we obtain (6) for an arbitrary v €
K(Q,,). Since H(K), holds, we may consider v in (6) to be fixed in K and
therefore we have the estimate

[t () < € (1 + meas(Qm) +11fll12(0,)) (25)

whereC' = C(v) > Oisindependent of /. From Remark 2(i), wehavelo,, — 1q,
in L2(RY)) which gives, in particular, that meas(Q,,,) < ¢4 and ||f]|12(q,,) < ¢s
with cs, cs > 0 independent of m. Therefore, (25) impliesthat {||um||v(q,.)} lies
inabounded set in R. Putting @,, = u, o T,,, and using the inequalitiesin Remark
4.1 of [20] (see also Section 2 of [16]), we obtain that {,, } remainsin a bounded
set of H(C). Thus, after passing to a next subsequenceif necessary, we have

Uy — u* weakly in H1(CO)

with some w* € H*(C). From Proposition 1 it follows that u* = wug o Tp and
ug € S(£p). Hence the pair (Qo, uo) is admissible for (23).

We will prove now that the pair (2o, ug) isan optimal onefor (23). We proceed
as in Theorem 3.1 of [16]. Firstly, combining Remark 2(ii) and Remark 3, we
deduce that for any compact G in Qg, thereisan mg > Osuchthat G C €, for
al m > mq. Next, we show that for any such G we have ||u., — uol|72() — O
which implies u,, — ug locally. To this end, let @, and v* denote the functionsin
L?(RV) obtained from,,, and «.*, respectively, by extending them by zero outside
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C'. From (25) and the compactness of the embedding H(C) c L?(C), it follows
that

U — u* inL2RY).
But this implies that

Uy, —> Ug 1N LZ(RN),

where
um(z), ifzeQy,
U () =
0, if 2 € RNV \ Qpn,
uo(z), ifzxeQo
uo(x) =
0, if z € RV \ Qo,

which means that |[u,, — uo|72() — 0, S0 um — ug locally in RV . Hence, due
to the hypothesis H(.J), we conclude that (2o, ug) solvesthe problem (23). 0O
Inthe casewherethe cost criterion is of integral form (24), the sufficient conditions
for its lower semicontinuity with respect to the local convergence were given by
Serrinin[32], for instance, (in the most simple case) theintegrand L(z, u, p) should
be nonnegative, continuousin (z, u, p) and strictly convex in p.

In theremaining part of this section we will present ageneralization of Theorem
4.1tothe casein which TK () varieswith T'.

DEFINITION 4. Let S,,, S be subsets of a Hausdorff topological space (Z, 7).
The sequential Kuratowski lower and upper limits are defined respectively by
r—liminf S, ={2€ Z :32, € Sp,2m — zinNT —Z, asm — +o0} and
T—limsup Sy, ={z € Z : 3{mu}, 2m, € Smy+2m, — zINT—Z, 88V — +00}.
When 7 is a Banach space, we say that S,,, convergeto S in the Mosco sense
(denoted by S, M, S)ifandonly if w—limsup S,, = s —liminf S,, = S, where
the letters w and s stand, respectively, for the weak and strong topologieson 7.

REMARK 5. It can be easily observed that S, - S iff w — limsup S,, € S C
s — liminf S,,,, which in turn, is equivalent to the following two conditions:

@) if zp, € Sy, and z,,, — zweakly in Z,then z € S,

(i) forevery z € S, thereexists z,,, € Sy, suchthat z,, — z strongly in Z.

The dependenceof thesetsT K (€2) on T isspecified in thefollowing hypothesis

H(K)3: ForQ,,Q € 0" and T,,, T € F*> with k > 2 such that
Q= T (C), Qo = To(C) and Ty, — To, Tt — Tp tin
[WL2(RN )V, wehave Ty, K (Q) 5 ToK () in HL(C),
asm — 4o0.



OPTIMAL SHAPE DESIGN FOR HEMIVARIATIONAL INEQUALITIES 51

LEMMA 3. Under the hypotheses (Hp) with o = oo, H(a), H(B), H(K)1,
H(K)zand H(f), if um, € S(Qy,), then

lullv(@,) < C (14 meas(Qm) +|f1lv7) , (26)

where a positive constant C' is independent of m.
Proof. Arguing asin the proof of Lemma 2, we obtain from (6) that (26) holds
with C'(v,,), where

C(vm) < b[vm|[ + b2 (27)

for every v,,, € K(£,,) and constants b1, b, > 0 independent of m.

Let v* € ToK (). Then, by hypothesis H(K)s, we find v, € T, K(Qy,)
such that ,,, — v* in H(C). L&t vy, = ,, o T);;1. We havev,, € K(£2,,) and by
the estimates of Remark 4.1 in [20], ||vi||v(q,,) is bounded independently of m.
By using the functions v,,, in (27), we obtain (26). O

PROPOSITION 2. If hypotheses (Hy) with o = oo, H(a), H(3), H(K)1, H(K)3
hold and f € L?(£2), then the assertion of Proposition 1 holds.

Proof. It goes similarly to that of Proposition 1 with some modifications
where K () is replaced with TK (Q) changing with T € F5*, Let Q,,, Qo,
Ty T, Uy Uiy Xrms Xoms s fm be as before. In the place of (12), we now have:
iy € HY(C) are such that

ar,, (Um, Um — Um) + (Xms Om — Um) = (fm, Om — Um), (28)

for every v, € T,, K(Q,,). The relation (13) does not need any modification.
Moreover, analogously to (14) and (16), we have

U — v weakly in H1(C) andin L?(C), (29)
Xm — x* weakly in L?(C). (30)
Since ty, € T, K (), from (29) and H(K)3, we get u* € ToK (Qo).

Letv € ToK () befixed. Then, thereisasequencev,, € T,,, K (€,,) suchthat
Om — 0 in HY(C). These functions o, will be used in (28). From the inequality

P = ) = (o = )| < |0tz — oty [ |Fon(in = ) | X +
+\det Iy | (1Fm = Fol [Bm — Tim| + | ol [ [Bm — 0] + liim — u*|])

and the convergences (29), f,, — fo. im — @ in LA(C) and detJy, — det.Jz, in
L®(RY), it follows that

(Frns Om — Tim) — (fo, 0 — u*), as m — +oo. (31)
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Similarly to (18) and (20), we have

(Xm» O — Um) — (X", 0 — u*),
(32)
ar,, (Um, Om — Um) — a1y (U, Oy — Up) — O.
Due to the strong convergence of {%,,,} in H*(C), we obtain
im |agy (i, B — )| < MM [ |y 15m — 0|y =0 (39)

From (28), using (29)—33), we get
(fo, 0 = u*) = 1iM(fyn, O — Gn) < iMinf agy (@m, By — @) +
+ Iinr1n [ar, (T, Om — Um) — a1y (Um, O — Um)] +
+Iinrln(>2m,6m — Upy,) < IiJlnaTo(ﬂm,ﬁm —0) +
+limsupagy (U, U — Up,) + (x5, 0 —u*) <
< aTO(ur:,f) —u*)+ (X", 0 —u).
Sincev € ToK (Qp) isarbitrary, by the samereasoning asin the proof of Proposition
1, we have
a(ug, v — uo) + (X0,v — u0)r2(00) = (fv —u0)12(00)» Vv € K (o),

whereug = u* o Ty 1. Sincetherelation yo(z) € dj(uo(z)) for ae. = € Qg canbe

proved exactly asin Proposition 1, we deducethat ug € S(£2p) and we are done. O
The proof of the following theorem uses Lemma 3 and Proposition 2. It is

completely analogousto the one of Theorem 3 and is therefore omitted.

THEOREM 4. Under hypotheses (Ho) witho = oo, H(a), H(8), H(K)1, H(K)s3,
H(J)and f € L?(Q), problem (23) has a solution.

REMARK 6. Having in mind Remark 4, we can prove Theorem 4 in the case of
more general right hand side of (HV1) i.e.when f € H~1(Q) aswell asin the case
where V = H(9).

5. Hemivariational Inequality with Nonlinear Law on the Boundary

The aim of this section is to provide an existence result for shape optimization
problems for hemivariational inequalities of the type

findu € K () such that

(34)
a(u,v —u) -I—/Fjo(u,v—u)da > (fyv—u)yryy, Vv e K(Q),
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where K(Q) c V() = HY(Q) and T = 99. This shape design problem isinves-
tigated in asimilar way as the one for the problem (HV1) of Section 3. Therefore,
we restrict ourselves to presentation the main steps of the reasoning, indicating
only the points where the essential changesin the arguments (in comparison with
Sections 3 and 4) are needed.

We admit the following

DEFINITION 5. An element w € K (§2) isasolution to (34) if thereis afunction
x € L3(T") such that

a0 —u) + /FX(U —w)do(z) > (fyo— by, VoeK(Q)  (3)
and
(@) € dj(u(z)) forae € T. (36)
Let Sp(€2) denote the set of solutionsto (34).

THEOREM 5. Under the hypotheses H (a), H((3), H(K )1 and H(f), the problem
(34) admits a solution, i.e. Sr(Q2) # 0. Moreover, if u € Sp (), then we have

lully < C(v) (14 measy_1(T) + || fl[v) ,
where C'(v) satisfies 0 < C'(v) < by||v|| + b2 and v is an arbitrary element of
K(Q).
Proof. Theexistence of solutionsto (34) can be established by using themethods

of Chapter 3 of [22] (compare aso [30]). For the proof of the estimate, we follow
the reasoning of the proof of Lemma 2. From (36) and H ((3), we get

(Xsu)r2(ry > —p1p2 measy—1(T),
x| < 2 (Vmeasy _a(T) + Jul)

where ¢, > 0 and | - | stands for the norm in L?(T"). Next, by the coercivity of
a(-,-), (35) and (37), it follows that

(37)

offu —ll} < prpzmeasy—_1(T) + M|lof|[Jv — ul| + || fl|v|Ju — ol +

+eo ( measy —1(T") + IUI> [v]

foral v € K(Q). In order to obtain the desired estimate, we proceed subsequent-
ly as in the proof of Lemma 2 using additionally the fact that V() c L3(T")
continuously. O

We recall the following two results which are needed in the sequel and whose
proofs can be found in Lemma4.7 and Lemma 4.8 of [20], respectively.
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LEMMA 4. (Change of variablesin boundaryintegrals). Let C be an open bound-
ed subset of RN with a locally Lipschitz boundary dC' and let @ = T(C) with
T € FYe 1f g € LY(002),theng o T € LY(0C) and

_ —t
/{m gdo = /ac(g o T) |detJr| ‘JT I/‘RN do,
where v isthe exterior unit normal to 0C.

LEMMA 5. (Transport of the normal through diffeomorphism) Let C' be an open
subset of RV with a locally Lipschitz boundary C, let @ = T(C) and T € F*°.
Then,

(7)) = 2 XreX)

= ‘JT*t(X)yc(X)‘ ae X € 0C,

RN

(where v, denotesthe exterior unit normal to set D).

REMARK 7. In connection with Lemma 4, it should be stressed here that if T is
in 75> (and not in F1°), then we are not able to define a summable functions
on 99 since 2 = T'(C) does not have, in general, alocally Lipschitz boundary.
For this reason we consider in the shape optimization problem for (34) the class of
admissible domains which are obtained as images of a set C' through mappings T
from the space F* and not only from F*> asin Section 3.

In what follows we use a bit stronger, in view of the above remark, hypothesis
than H(K)zZ

H(K)y: K =TK(Q) c HY(C) isindependent of T for every T €
Fre with k > 2.

PROPOSITION 3. Assume that (Hp) with o = ¢, H(a), H(3), H(K)1, H(K)4
hold and f € L?(€). Then the statement of Proposition 1 remains true provided
the set S(Q2) isreplaced by St (Q2); i.e.themap B > Q — Sp(Q) C V(22) hasa
closed graph in the following sense: if Q,,, Q0 € B, Q,,, — Qg in O%°, (k > 1),
Um € ST(Qm)y U = U © Tiy, U — ©* Weakly in H1(C), then u* = ug o Tp
for some ug € Sr(Qo), whereQ,,, = T;,,(C) and Qo = Tp(C).

Proof. Let ,,,Q0, T1n, To be asin the proof of Proposition 1, u,, € Sr(Q)
andlet T, = 0Q,,. Thusu,, € K(Q,,) and x,, € L3(T,,) are such that

a(Up, v — Up,) -I-/ Xm (U — Up)do > (f,v —upm)r2, Yo K(Qpy)
Im
(38)
and

Xm(z) € 0j(un,(z)) forae z € Ty,. (39)
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Applying the transformation z = T,,,(X) and using Lemma4, we rewrite (38) and
(39) in the following equivalent form

ar, (Tms v — Tim) + (Xm, ¥ — ) = (frm, v — ), Yo € K C HYO)

(40)
and
xm(X) € 9j(un (X)) forae. X € 0C, (42)
where iy, = U © Ty Xm = Xm © T, fm = foTp,
PN s = —t
(Xms Um) = /ac Xm U |detdT, | ‘JTmV‘RN do (42)

and the expressions for ar,, (-,-) and (f,v) are the same as in the proof of
Proposition 1. We keep v in (40) to be fixed in K since K satisfies H(K)4. As
before, we have i,, — u* weakly in H1(C) and strongly in L?(C') with u* € K.
Moreover, since H(C) c L?(0C) compactly, it follows that

Um — u* in L2(0C). (43)
Subsequently, from (41) and H (53)(414), we obtain
[Xm| < ca(measy _1(9C) + [tm|) (44)

with ¢4 > 0 (| - | being the L2(6C) norm). From (43) and (44), after passing to a
subsequenceif necessary, we have

m — x* weakly in L2(dC) (45)
with some x* € L2(9C).
We claim that
(X\maﬂm) _>/1_‘ xXouo dO’, (46)
0

whereTo = 990, X0 = x* o Ty > and up = u* o Ty *. Indeed, taking into account
(43), (45) and the convergences detJy,, — detJy, in L(RY), J;* — Jgtin
L® (RN, ®R?V), we can pass to the limit in (42) and we get

i (Fons ) = [

ocC

X" (X) u*(X) [detry(X)| | I (X)vo(X)| do(X).

RN
Next, applying the transformation X = T, () and Lemma4 again, we have
M (R i) = | Xolo) uo(a) [detrg(Ty (o)
0

x \J;Ot(Tgl(x))yC(Tgl(x))\RN ‘detJTo_l(:v)‘ T (2) v, (@)

Ty

do(z).

RN
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Using the relations .J;, (T, *(z)) = (), det.Jr, (Tp *()) - det/;—1(z) = 1
aeonR" and Lemma’5, we obtain

Mo, ) = | Xo() o) |5 (Ty M) (T M),

To RN
I (To (@) )ve (Ty H(x)

" T (T3 @) el Ty @)

do(z).

T, (To ()
‘ RN IpN
which provesthe claim.

Anaogously as in the proof of Proposition 1, we get (17) and (20), which
together with (46) allow to pass to the limit in (40). Moreover, also similarily
as before, we use the convergence theorem (cf. [1]) to deduce that x*(X) €
07 (u*(X)) forae. X € 9C. Thus, we have

{ CL(’U,o, v = Uo) + (X07 v = UO)LZ(FO) > (f7 v = UO)LZ(Qo)a VveK

xo(z) € 9j(uo(z)) forae = € Tp.

Hence we conclude immediately that up € Sr(Qo) and u* = wg o Ty, which
completes the proof. O

The optimal shape design problem for hemivariational inequality of type (34)
reads as follows

find (2*,u*) € | (2 x Sp(2)) suchthat

QeB (47)
J(Qu*)=min min J(Q,v),
QEB veSr(Q)
where B ¢ O%° (k > 2) denotes a family of admissible shapes, Sr() is the
solution set of (34) and the functional .J is of the form (24).
The existence of optimal shapes in the above problem follows from similar
arguments as given in Theorem 3.

THEOREM 6. Under hypotheses (Hyp) witho = ¢, H(a), H(8), H(K)1, H(K)a,
H(J)and f € L?(), the problem (47) admits a solution.

When the sets T' K (£2) vary with T', we need the following hypothesis
H(K)s: For Q,,,Q € O and T,,, T € F*° with k > 2 such that
Q. = T (C), Qo = To(C) and Ty, — To, Tyt — To tin
[WLE(RN)]Y, we have T K () —L ToK (Qo) in HY(C),
asm — +00.

In this case the following theorem can be established.

THEOREM 7. If hypotheses (Hp) with o = ¢, H(a), H(B), H(K)1, H(K)s,
H(J) holdand f € L?(2), then problem (47) has a solution.
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6. Commentson Applications

The mathematical results for HV s have had a significant impact on several areas
of mechanics. We give three examples coming from mechanics which well fit the
framework of domain optimization problems outlined in this paper.
1) Plane elasticity problem (see[18]). A contact problem of an elastic body with
arubber layer situated on arigid foundation. There is anonmonotone law between
displacement and boundary force which leads to problem of type (2).
2) Skin effectsin elasticity (see[27], [28]). Thisis aclass of problemsin plane
elasticity theory where the adhesive or frictional effectstake placeinaset Q' C Q.
There is a multivalued (one dimensional) law between the displacement and the
reaction of the constraint introducing the skin effect; it leads to problem of type
D).
3) Semipermeable media (see [24] and [22], p. 186). There are two classes of
semipermeability problems, the interior and the boundary ones, which lead to (1)
and (2), respectively.

For other examples to which our results can be applied, we refer to [24], [27]
and [22].

REMARK 8. The typical cost functionals of the form (24) arising in structural
mechanics, electricity, fluid flow etc. arefollowing: L(z, u, p) = p(z), L(x,u,p) =
|u — uo|?, L(z,u,p) = |p|?> which correspond, respectively, to minimization of
weight (p being adensity function), minimization of displacement (or of the devi-
ation from the desired state ), and minimization of stresses.

REMARK 9. Thereis a vast literature concerning the convergence of Mosco for
unilateral nonempty convex sets of the type

K(g) ={veWy?(Q) : v>gaeinQ}
where 1 < p < oo. It is known (cf. [2]), for instance, that K (g,,) %K(g), as
n — oo, if one of the following conditions holds

gn — g In WH(Q),

gn — g weakly in WhP+e(Q), for somee > 0.
A necessary and sufficient condition for the M osco convergenceof K (g,,), expressed

in terms of the convergence of the Wol”’ (©2)—capacity of the level sets {z € 2 :
gn(z) > t} has been established in [7].

REMARK 10. For the convenience of the reader, we present, following [16] some
examples of unilateral setswhich are met in applications:

Ki(Q) = {ve HYQ) : v =b0ondQ, v > cae inQ},

Ky(Q) = {ve HYQ) : v >dae inQ},

K3(Q) = {v e H}(Q) : v(z) > ¢(z) ae inQ},
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where b, ¢, d are constants, ¢ € WP(RY) N C(RY) and p > 2. It can be shown
that the sets K1 (€2) and K> () satisfy hypothesis H (K ), while K3(2) satisfies
H(K)a.

REMARK 11. For the cost functionals of the form 7 (Q,u) = [, L(z, u(z)) dz,
we can obtain the existence of solutions to the problems (23) and (47) without
referringtothelocal convergenceof functions. Inthiscase, wesupposethat L: R x
R — [0, +o0) isaBorel function, L(z, -) isl.s.c.and L(z,v) < ¢ (1 + |v|?) for all
z € RV, v € R with ¢ > 0. For details, we refer to Theorem 3in [10].
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